Diffusion and Osmosis
Molecular Movement in Cellular Solutions
The cytoplasm of cells is 70 to 95% water. Dissolved or dispersed in that water are various salts, sugars, proteins, etc. which make up a complex mixture of molecules.
Molecules in liquids and gases are in constant motion due to their kinetic energy. Substances dissolve in water and disperse throughout a solution because they are constantly in motion. In part, this motion is due to Brownian motion in which molecules of solutes and particles which are dispersed in a solution are “bombarded” by moving water molecules, which “jostles” them around, causing them to move even more. (Note, in a very quiet room, you may be able to hear the sound of Brownian motion as air molecules bombard your ear drums.) Thus, diffusion is the tendency for molecules of any substance to spread out randomly into the available space. Substances (solutes) will diffuse from more concentrated to less concentrated areas or solutions. Passive transport is diffusion across a semipermeable, biological membrane. Sometimes, though, solute molecules are too large to go through a semipermeable membrane, or perhaps, have an electrical charge which does not allow them to pass through the membrane. In spite of that, there is still a tendency for the concentrations of the solutions on both sides of that membrane to equalize. One way in which that is acomplished is through the process of osmosis (osmo = to push; -sis = the act of), which is a special case of passive transport in which water diffuses across a selectively permeable membrane from less to greater solute concentration to try to equalize the concentrations of the solutes.
If a cell and its watery environment have the same concentrations of solutes, they are said to be isotonic (iso = equal; tono = tone, tension, stretched) solutions. If the environment has a greater concentration of solutes, it is hypertonic (hyper = over, above) with respect to the cell contents, and the cell will shrink as it loses water. If the environment has a lesser concentration of solutes, it is hypotonic (hypo = under, beneath) relative to the cell contents and the cell will swell or, in the case of animals, even burst as it gains water.
Osmosis
Set this part up first because it takes the longest to do. Because you will be taking readings every 15 min, you can do the other parts of the lab in between taking readings. Work in groups of 5 students so each person can “adopt” one of the 5 solutions to be tested. Each person should record the data for all 5 solutions in his/her lab notebook.
wtfin – wtinit = Δwt
Δwt/wtinit × 100 = %Δwt
Brownian Motion
This may either be done as a class demonstration, projected on the screen, or individually, by students.
Carmine Suspension
Using a microscope slide and coverslip, make a wet mount of
a carmine (a red dye) suspension and examine under the microscope. This
is not a solution because the carmine does not actually dissolve in the
water, but rather, tiny bits of carmine are suspended in (float around in)
the water and may be seen with a microscope. Describe what you see. Are
any of the particles, especially the smaller ones, moving? Hopefully, you
should see them “jiggling around” and “zig-zagging.” This type of motion is
called Brownian motion after Robert Brown who first described it. The water
molecules, which are invisible, are in constant motion and are slamming into
the carmine particles (like pool balls), causing them to jump around. Note
that if you see “everything” drifting/flowing in one direction, for this
experiment, that’s not something of significance — that motion is due to
the water under the coverslip beginning to evaporate (dry up).
Diffusion
Either as a class demonstration or in your group, put some
tap water in a beaker. Set the beaker on a table and let it sit until calm.
Make sure it doesn’t accidentally get bumped, jostled, or picked up — don’t
disturb it once it’s calm. Gently add a couple drops of methylene
blue (or another dye) with the dropper near the surface of the water so as
to disturb the water as little as possible. Observe what happens over time.
Do not bump or move the beaker once the dye is added.
As time, interest, and availability of substances alow,
another somewhat-similar demonstration that may be done is:
if milk is available, place some whole milk in a saucer. Gently add
one drop each of red, yellow, green, and blue food coloring, each in a
different quadrant of the milk. Then, gently add one or two drops of dish
detergent (supposedly Dawn® works well) to the center of the milk.
Observe what happens over time. The explanation for what’s going on here
is actually complicated, because in addition to diffusion, there are other
things happening as the detergent emulsifies the butterfat that’s homogenized
in the milk, plus in addition to the food coloring, the detergent is also
diffusing throughout the milk. Milk is an emulsion, even before being
homogenized. The detergent is also a surfactant, a substance which
reduces the surface tension of water.
(If you are having a family gathering for
Thanksgiving, this is a good “magic trick” you can use to entertain a
bunch of children and keep them entertained for at least a little while.)
Isotonic, Hypotonic, and Hypertonic Solutions
Many types of cells exist in an isotonic environment;
that is, the concentrations of the solutes in the external environment are
the same as the concentrations of those solutes inside the cell. However,
if the external environment has a higher concentration of solutes (is
hypertonic, water will flow out of the cell, and the cell will, thus,
shrivel up. In animal cells, this is called crenation. It is possible
that an animal cell could recover from mild crenation if/when placed back into
a normal environment. In plant cells, as the cell shrinks and the plasma
membrane pulls away from the cell wall, there is a chance it might tear.
This is called plasmolysis (lysis = loosen, break apart). If
the plasma membrane pulls away from the cell wall without tearing, it is
possible that the cell could recover when placed back into an isotonic
environment, but if plasmolysis has occurred, the cell is dead. If the
external environment has a lower solute concentration than the inside of the
cell (is hypotonic), water will flow into the cell. A plant cell
surrounded by its cell wall is sort-of like a water balloon in a cardboard
box — it becomes turgid as the increased water presses the cell tightly
against its cell wall, but the cell usually does not burst, and when placed
back into an isotonic environment, can often recover. Animal cells, however
do not have a cell wall, and so will swell until they burst open
(cytolysis).
Normal Elodea Cells
Plasmolysis in Elodea
Make a wet mount of an Elodea leaf as in the “Cells
and Organelles” lab. Examine and draw a typical cell as seen under the
microscope.
Put a drop at a time of 15% salt solution at one edge of the coverslip and observe what happens to the leaf. If your slide starts to get really wet, use a Kimwipe to absorb some of the excess. DO NOT GET LIQUID ON THE MICROSCOPE!!! If some does get on the microscope, immediately and thoroughly wipe it off! Record how many drops of salt solution were added to cause a change in the appearance of the cells. Draw and describe this change.
Now, add distilled water a drop at a time. DO NOT GET THIS ON THE MICROSCOPE!!! As before, if your slide starts to get too wet, use a Kimwipe to absorb some of the excess. If some does get on the microscope, wipe it off immediately and thoroughly! Observe what happens and record how many drops of water were needed to cause a change in the appearance of the cells. Draw and describe this change.
Optionally, if someone in your class is willing to “donate” a drop of blood, your class could also examine the effects of adding salt solution and/or dH2O to blood cells.
WHEN YOU ARE DONE: make sure your microscope is CLEAN AND DRY before putting it away. Make sure there is absolutely no salt solution or water spilled on it — especially check around the hole where the condenser comes up through the stage. Remember to follow all the steps for proper storage of the microscope.
Other Things to Include in Your Notebook
Make sure you have all of the following in your lab notebook: